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EXECUTIVE SUMMARY 

This deliverable reports on the second independent field test of the OptiDrill drilling advisory system and 
the sensor system at the Fraunhofer IEG site in Bochum, Germany. Initially planned as drilling simulations, 
the team opted for field-scale testing to better replicate real-world conditions, yielding more credible 
validation results. 

During the test, the OptiDrill system monitored drilling parameters, including weight on bit (WOB) and 
rotational speed, over a depth of approximately 102 meters. The ROP prediction module achieved a Mean 
Absolute Error (MAE) of 1.89 m/h, identifying opportunities to enhance drilling efficiency by up to 19%. 
The lithology prediction module improved in accuracy compared to the first field test, but struggled with 
transitional formations, indicating a need for site-specific model retraining. The anomaly detection 
module flagged about 20% of data as anomalous, demonstrating its potential to identify operational risks. 
The sensor system effectively captured dynamic drilling parameters but faced limitations due to surface-
level placement, which affected accuracy. Additional tests within the UK deployed the sensors directly in 
the drill string for improved validation. Furthermore, the KPIs that were defined at an earlier stage of the 
project within deliverable 1.5 are discussed and an outlook on the future steps is given. Overall, the field 
testing provided valuable insights into the OptiDrill system's capabilities, confirming its potential to 
optimize drilling performance and energy efficiency.  
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1. INTRODUCTION 

Work package number 13 deals with the field testing of the OptiDrill system and the evaluation of the 
system’s outputs generated by the integrated machine learning models. This report summarizes and 
evaluates the findings and outputs of the OptiDrill system from the second field test that was performed 
in at the IEG in Bochum, Germany. The OptiDrill system was tested in a similar manner as it had been 
during the first field test. Based on the findings from the first field test, which were stated in the previous 
report, the supervised learning-based machine learning model were retrained on the newly acquired data 
from the P1 wellbore. 

In the first section of this report the changes to the OptiDrill software, especially the ROP prediction and 
the drilled lithology prediction models are described. A brief summary of the second field test is given and 
the results from the model retraining are presented and summarized.   
In the second section of the report the results from the field test are evaluated. The dataset generated 
and processed during the drilling operation is analyzed and compared to the data the machine learning 
models were trained on. Afterwards the outputs of the three machine learning based software module 
for the ROP prediction and optimization, the drilled lithology prediction, and the drilling problem 
detection are evaluated following the same procedures as it has been reported on in the previous 
deliverable for the first field test. Insights into the testing of the OptiDrill sensor system are also given in 
the second section of the report. Within the third section of the report the KPIs that were defined in the 
public deliverable 1.5 at an earlier stage of the project are discussed. 
Finally, a conclusion summarizing the findings from the second field test is given discussing the results, 
new insights, and shortcomings of the OptiDrill system and its application in a real drilling environment.  
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2. SECOND FIELD TEST IN BOCHUM 

The second round of drilling within the Push-It project was conducted in early November, as described in 
the deliverable report D13.1. Again, just as during the drilling operation for the P1 wellbore the IEG joined 
the whole process for conducted a second field test of the OptiDrill software system. During the second 
field test the software was run for around 41 hours and a drilled depth of 102 meters was recorded and 
analysed using the OptiDrill system. The project partner Oliveris (formerly PVI) joined the drilling 
operation again and recorded data from around 80 metres until the end of the wellbore. 

2.1 Field Test OptiDrill Software Settings and Model Retraining 

The OptiDrill Drilling Advisory System was run in the same manner as it was reported on in the previous 
report. No major changes to the software system were applied after the first round of drilling. However, 
as it was decided based on the findings from the previous report the supervised-learning based machine 
learning models for the ROP prediction and the drilled lithology prediction were retrained based on the 
data from the P1 wellbore. Apart from the retraining of the models for the ROP optimization framework 
it was decided to remove the mud flow from the set of controllable parameters. This was done based on 
a discussion with the driller, since the mud flow was already at its maximum due to hardware limitations 
and should not be changed, especially lowered to guarantee proper flushing and cuttings transport to the 
surface. 

2.1.1 ROP Prediction Model Retraining 

The ROP prediction model that is the basis for the MSE based ROP optimization was retrained on the data 
from the first wellbore to try and improve the good results that could already be achieved during the first 
round of drilling a little further. For this purpose, a cross validation was performed and the transformer 
model for the ROP prediction was retrained on four folds of equal length of the P1 wellbore.  

Fold MAE [m/h] RMSE [m/h] R2 

0 0.91 1.31 0.96 

1 0.89 1.34 0.94 

2 0.94 1.34 0.97 

3 0.86 1.12 0.80 

Mean 0.9 1.28 0.92 
 

 

The table above shows the results of the cross-validation of the transformer model on the P1 wellbore. 
Each of the sections of the four individual folds cover around 32 metres of consecutive drilled depth. 
Looking at the results from the cross validation it can be seen that performance metrics are all very good 
with an average MAE of 0.9 m/h, an average RMSE of 1.28 m/h, and an average R²-Score of 0.92. The 
figure on the next pages gives an overview of the validation results of the 4 folds with the actual and the 
predicted ROPs plotted over the measured depth of the well.  

Table 1: ROP prediction k-fold-cross-validation results for retraining 
on the P1 wellbore 
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The table and the plots in the figure above show that the model’s predictive performance is very 
consistent over all sections of the well. Based on the findings from the k-fold-cross-validation a ROP 
prediction model was trained on the whole wellbore dataset, while being validated on the last 20 metres, 
that was then later used for the second field test. The figure below shows the training process of the 
model with the training loss in blue and the validation loss in orange. The training was terminated by the 
implemented callbacks to prevent overfitting.  

Figure 2: Actual ROP values in blue and predicted ROP values in red plotted over 
the measured depth of the P1 wellbore for all four folds of the cross validation 

Figure 1: Train and validation losses of the ROP prediction model 



 

 

OptiDrill – 101006964 | Deliverable D13.3 V1.2| PUBLIC 10/29 

 

2.1.2 Drilled Lithology Prediction Model Retraining 

The 1D CNN drilled lithology prediction model was also retrained on the P1 wellbore dataset. However, 
since in this case we are dealing with a classification model, not with a regression model as in the previous 
section, it was not possible to perform a k-fold-cross-validation on consecutive section of the wellbore 
dataset. Since the lithology profile is not very diverse this would result in folds in which not all classes can 
be represented either in the data used for training or the data used for the validation of the model. Due 
to this limitation, it was decided to retrain and validate the drilled lithology model on a stratified random 
train-validation split. Stratified mean in this context that the balance between the classes in both splits  
will be guaranteed. The results of the training and validation of the 1D CNN model are shown in the 
following figures.  

The train and validation losses and accuracies of the retrained drilled lithology prediction model shown in 
the figure above are very good with a final validation accuracy of 97%. However, the training approach 
used here due to the lack of diversity in the lithology profile and the lack of additional wellbore datasets, 
is not ideal as it has been discussed and justified in the deliverable reports from work packages 7 and 8. 
The results achieved during model training and validation are not expected to be reproducible during the 
field test, however since this time the model will be trained on the same set of classes that will be 
encountered, we expect better results than in the first field test and additional valuable insights from the 
evaluation of the model outputs.  

  

Figure 3: Train and validation loss and accuracy of the 1D CNN model trained on the P1 
wellbore dataset 
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The confusion matrix above shows the results of the validation of the lithology prediction model. During 
the validation barely any significant confusion with other classes occurred. The greatest, but still 
insignificant confusions occurred between the classes Claystone (Tst.) and Claystone/Sandstone 
(Tst./Sast.). In no instance was the class Sandstone (Sast.) confused with any of the other two classes. 
However, in some instances the other classes were incorrectly predicted as Sandstone. 

  Sandstone Claystone Claystone/Sandstone 

Precision 0.88 0.99 0.98 

Recall 1.00 0.98 0.98 

F1-Score 0.94 0.99 0.98 

Support 100 1439 1040 

  

The table above displays the performance metrics for the three lithology classes. All metrics show the 
same picture with very good results and only very few errors that occurred during the model validation.  

Figure 4: Confusion matrix of the retrained drilled lithology prediction model 

Table 2: Individual performance metrics for the different lithology classes 
from the validation of the drilled lithology prediction model 
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3. FIELD TEST RESULTS AND EVALUATION 

In this section we are reporting on the results and findings from the second round of field testing in 
Bochum. First, we are going to take a look at the data that has been gathered and processed by the 
OptiDrill system during the drilling operation. We will compare the dataset created during the second 
field test with the data from the first field test, which was used for training the ROP and drilled lithology 
prediction models. Afterwards we will look at the outputs of the three machine learning models.  

3.1 Data Comparison 

The following figure shows the plots of the drilling process parameters processed by the OptiDrill software 
system and used as input data for the machine learning models. The plots do not show any larger gaps in 
the data or other problematic areas. What can be observed in the plots is the change of the bottom hole 
assembly at around 29 metres depth. From that point on a clear change in the measured values for some 
of the drilling process parameters can be observed, e.g. for the torque and WOB which were very constant 
before and increased afterwards, or the mud flow which was also increased. 

However, comparing the plots from the second wellbore to those of the first wellbore some significant 
differences can be observed, which are even more obvious when comparing the statistical overviews of 
both datasets. The following two tables show the statistical overviews of the P2 and the P1 wellbore 
datasets that have been processed by the OptiDrill system. Since the P1 wellbore was drilled deeper than 
the P2 wellbore, for the statistical overview of the P1 dataset only the same depth range was used as in 
the P2 dataset. 

  Depth_m RPM_rpm WOB_kN TRQ_kNm P_P_kPa MFI_lpmin ROP_mph 

mean 64.63 37.50 32.31 4.47 1009.01 1803.70 6.91 

std 29.41 3.10 11.29 1.12 39.52 66.35 4.84 

min 13.90 3.00 0.10 0.88 700.00 1358.50 1.00 

25% 39.16 36.00 21.48 3.80 1000.00 1758.00 3.00 

50% 64.48 37.50 34.92 4.54 1000.00 1820.42 6.20 

75% 90.27 39.00 42.21 5.20 1000.00 1856.00 9.75 

max 115.43 44.00 51.11 9.66 1100.00 1958.00 37.00 
 

Figure 5: Plots of the drilling process parameters from the P2 wellbore processed and saved by the OptiDrill System 

Table 3: Statistical overview of the P2 wellbore dataset from the second field test 
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  Depth_m RPM_rpm WOB_kN TRQ_kNm P_P_bar MFI_lpmin ROP_mph 

mean 64.74 36.28 47.21 4.86 1092.46 1676.04 15.27 

std 29.71 3.51 17.71 0.76 28.43 37.67 6.85 

min 13.90 7.00 0.00 1.18 1000.00 1548.00 1.00 

25% 39.20 35.00 30.71 4.32 1100.00 1647.33 10.00 

50% 63.59 36.00 49.44 4.92 1100.00 1680.00 14.00 

75% 91.04 38.67 60.43 5.37 1100.00 1703.00 19.50 

max 115.43 44.00 105.07 7.90 1200.00 1760.50 40.00 
 

 

Comparing the two tables, especially for the drilling process parameters WOB and the ROP significant 
differences can be seen in the statistical overview. The WOB values of the second round of drilling are 
significantly lower, the mean WOB of the P2 wellbore is at 32 kN, while the mean value of the P1 wellbore 
lies at around 47 kN. This can be explained due to the limitation of the WOB values that has been applied 
because of the new, much heavier BHA that was used for the P2 wellbore.  Comparing the ROP values of 
the two values it is obvious that the P2 wellbore was drilled much slower. The mean ROP of the P2 
wellbore lies at 6.9 m/h while the mean ROP of the P1 wellbore is more than twice as high with almost 
15.3 m/h. This is also caused by the limitations in WOB and ROP that have been decided on to reduce the 
risk of deviations from the vertical in the wellbore path. Apart from these two parameters the mud flow 
was also increased in the second wellbore, but not as significantly as the other two parameters WOB and 
ROP.  

3.2 Machine Learning Model Evaluation 

In this section of the report the outputs of the machine learning based modules of the OptiDrill software 
will be evaluated in the same manner as they have been in the previous report. Since for the second round 
of field testing the ROP prediction and the drilled lithology prediction models have been optimized and 
retrained on the data from the first field test, we will compare the results achieved in both runs in each 
section. 

3.2.1 ROP Prediction and Optimization Module 

The following table shows an overview of the errors made by the ROP prediction model.  The MAE lies at 
1.89 m/h, the RMSE at 2.47 m/h, and the R²-Score at 0.78. All three error metrics calculated are better 
than those that were achieved during the first field test. Looking at the sign of the errors made it can be 
seen that compared to the first round of drilling the model more optimistic predictions that were higher 
than the actual ROP value with a higher average positive error. This can be explained by the fact that the 
model was trained on a dataset with significantly higher ROP values than those that were achieved. 

ROP  
Errors 

MAE [m/h] 1.89 

RMSE [m/h] 2.466586 

R2-Score 0.777345 

Instances with positive error 6348 

Average positive error [m/h] 2.24 

Instances with negative error 3420 

Average negative error [m/h] -1.23 
 

Table 4: Statistical overview of the P1 wellbore dataset from the first field test 

Table 5: ROP prediction mode error evaluation 
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The difference in ROP values was described in the previous section and was caused by the limitation in 
ROP and WOB in order to prevent the drill path from deviating. 

The plot above shows the actual ROP values recorded during the drilling operation alongside the values 
that were predicted by the model. Additionally, the MAE for a window of 100 consecutive predictions was 
plotted in orange. The trend of predicting higher ROP values can be clearly seen in the plots, especially in 
the last two thirds of the wellbore. It can also be seen that the prediction in the first section of the 
wellbore, until around 29 metres, are more on point that the rest. This is due to the fact that for the first 
section the same BHA was used as for the first wellbore. This can be very clearly seen in the following two 
figures comparing the predictions from the first section of the well with the old BHA with another section 
with the new BHA. 

 

Figure 6: Actual ROP in blue and predicted ROP in red plotted over the measured depth. The MAE for a window of 100 data 
points is plotted in orange. 

Figure 7: Comparison of the prediction of two sections with equal length and different BHAs 
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  Actual ROP Predicted ROP Optimised ROP 

Average ROP [m/h] 6.68 7.70 7.74 

Standard deviation [m/h] 4.52 3.30 3.30 

Min. ROP [m/h] 1.00 3.30 3.17 

Max. ROP [m/h] 38.00 30.47 29.12 

Percentile 50% [m/h] 6.00 6.76 6.81 

Percentile 75% [m/h] 9.00 9.59 9.61 

Percentile 90% [m/h] 13.00 12.57 12.63 

Percentile 95% [m/h] 14.67 13.80 13.89 

Percentile 99% [m/h] 18.00 17.53 17.79 
 

The table above shows a statistical overview of the actual ROP values recorded during the drilling 
operation, the predicted ROP values based on the measured drilling process parameters, and the fictitious 
optimised ROP values based on the systems recommendations. Comparing the actual with the predicted 
ROP values the average predicted ROP values are about 1 m/h higher, while the standard deviation is 
around 1.2 m/h lower for the predictions. Also, it looks like the model is struggling to predict very low ROP 
values. The last column, showing the statistical properties of the optimised ROP values, shows that the 
average optimised ROP value is just insignificantly higher than that of the actual ROP. Looking at the 
percentiles it can be seen that this applied to every single percentile that was calculated.  

The figure above shows the actual ROP values in blue plotted over the measured depth alongside the 
optimised, expected ROP values in green. The plots show that the optimised ROP values are on average 
significantly higher than the actual ROP values, which is to be expected since the predicted ROP values 
showed the very same trend. 

  Actual MSE Optimised MSE 

Average MSE [N/mm2] 232.21 92.46 

Standard deviation 
[N/mm2] 244.31 38.03 

Min. MSE [N/mm2] 0.64 0.68 

Max. MSE [N/mm2] 1406.08 176.98 
 

  

Table 6: Statistical overview over the different ROP values 

Figure 8: Actual ROP in blue and optimised (expected ROP) plotted in green over the measured depth 

Table 7: Actual and optimised MSE values 
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ROP Optimisation  MSE Optimisation 

Average ROP enhancement [m/h] 1.06  Average MSE enhancement [N/mm2] 139.75 

Average ROP enhancement [%] 69.11  Average MSE enhancement [%] 36.25 

Increased ROP values 9782  Decreased MSE values 9348 

Decreased ROP values 0  Increased MSE values 433 

Constant ROP values 0  Constant MSE values 1 
 

 

The tables above give an overview of the MSE and ROP values in context of the optimisation based on the 
controllable drilling process parameters. The first table compares the actual with the optimised MSE 
values. It shows that the average MSE values is significantly lower than the average actual MSE value. 
However, due to the model’s strong tendency to predict ROP values higher than the actual ROP, these 
values cannot be trust to full extent.  

The other two tables show an overview of the impact of the optimization on the theoretical ROP and MSE 
values that were predicted and calculated. The optimised ROP value was higher than the actual ROP value 
in all cases with an fictitious average ROP enhancement of around 1 m/h. Looking at the MSE optimisation 
the optimised MSE value was lower than the actual value in around 96% of the cases with an average MSE 
reduction of around 140 N/mm². Of course, due to the tendency of the ROP prediction model to predict 
optimistically with an average positive error of over 2 m/h, these values need to be interpreted in this 
given context. 

  Process Parameter 

Recommended Action RPM WOB 

Increase 0 9781 

Decrease 9782 0 

Constant 0 1 
 

 

The table above gives an overview of the recommended action by the OptiDrill system to optimise the 
ROP based on the MSE. It can be seen that these actions were very one-sided during the second field test. 
The RPM was always recommended to be lowered, just as it was for the first field test, and the WOB was 
always recommended to be increased. This makes sense since the WOB was limited to a lower value 
during the second field test as mentioned before.  

Table 8: ROP and MSE optimisation overview 

Table 9: Recommendations for the controllable drilling process 
parameters by the OptiDrill system 
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3.2.2 Drilled Lithology Prediction Module 

The drilled lithology prediction model has been retrained on the data from the first round of drilling and 
tested during the second drilling operation. The following table shows an overview of the prediction of 
the model and the distribution of the actual classes.  

Lithology 

Predicted  
Classes 

Sandstone 56 

Claystone/Sandstone 4272 

Claystone 5454 

Actual  
Classes 

Sandstone 498 

Claystone/Sandstone 5037 

Claystone 4247 

Predictions 
True  3414 

False  6368 
 

 

The lithology prediction model was trained on the same classes that were 
determined during the logging of the second wellbore. It has to be noted 
that the lithology log that was used for the evaluation of lithology prediction 
model outputs on the second wellbore was a preliminary version, however 
due to time constraints this version had to used. The table shows that the 
distributions of the prediction lithology classes do look reasonable. All 
classes have been predicted, although the class sandstone, which is a 
minority class, has only been predicted in about 56 cases. All in all, the 
accuracy that could be achieved lies at around 35%, which is significantly 
lower that the accuracy that was achieved during the model retraining. This 
was expected and looking at the results it is very likely that the model 
overfitted to the training data, causing its ability to generalize and transfer 
its predictive capabilities to new data that is introduced to the model. 

Table 10: Drilled lithology prediction model outputs from the second 
field test in Bochum 

Figure 9: Preliminary lithology 
log Push-It P2 wellbore 

(created by Stefan Klein, CC 
Bergbaufolgenutzung, IEG) 

Figure 10: Confusion matrix of the model predictions for the Push-It P2 wellbore 
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  Claystone Claystone/Sandstone Sandstone 

Precision 0.32 0.39 0.00 
Recall 0.41 0.33 0.00 

F1-Score 0.36 0.36 0.00 
Support 4247 5037 498 

 

 

The confusion matrix and the table above give further details about the drilled lithology prediction 
model’s outputs during the second field test. Looking at the confusion matrix it can be seen that there are 
a lot of confusions between the classes claystone and claystone/sandstone. Apart from that it can be seen 
that no single instance of the class sandstone has been predicted correctly. The majority of the instance 
falsely classified as sandstone were misclassified as claystone/sandstone. The table with the respective 
performance metrics of the individual classes confirms these observations. 

All in all, it can be concluded that the drilled lithology prediction model’s performance did improve 
compared to its performance during the first field test. The predictions show more diversity and all 
lithology classes have been learned and output by the model. However, the quality of the predictions 
made is not satisfactory. Many confusions occur between the three classes, of which some are 
comprehensible, e.g. that many instances of the classes claystone and claystone/sandstone are confused 
or that the majority of the predictions of the class sandstone actually belong to the class 
claystone/sandstone. The most obvious reason for this is the lack of data. Although, the location of the 
Push-It wellbores is not too far from other locations for which a reasonable amount of data is available, 
such as the Geostar 2 which was used for training the model in the first run, the local lithologies still differ 
and require new data to enable a reliable classification. The second most likely reason is overfitting on 
the training data from the first wellbore. Since again, the statistical properties of the dataset that has been 
recorded during the second wellbore have changed significantly compared to those of the first wellbore, 
the model might be too adapted to the data from the first wellbore, leading to poor predictive 
performance. 

 

3.2.3 Drilling Problem Detection Module 

Since no optimizations have been implemented in the anomaly detection based drilling problem detection 
module, no significant differences should be expected. The following table shows an overview of the 
predictions made by the model during the second field test.  

Anomaly  
Detection 

Predictions 9779 

Anomalous 2295 

Not anomalous 7484 
 

 

Around 23% of the data points that have been analysed by the anomaly detection framework have been 
classified as anomalous. This falls in a comparable range than during the first field test of the OptiDrill 
system where around 20% of the data points were classified as anomalous. However, no actual drilling 
problem was encountered during the drilling operation.  
 
 

Table 11: Individual performance metrics for the different lithology 
classes from the validation of the drilled lithology prediction model 

Table 12: Anomaly detection model outputs 
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3.3 Novel sensor system data and interpretations evaluation 

3.3.1 Evaluation of Gain, Coherency, Angular Velocity (ω), and Specific Rock Energy (SRE) 
Analysis. 

The analysis examines Gain (dB), Coherency, Angular Velocity (ω, in rad/s), and Specific Rock Energy (SRE) 
across transitional and non-transitional regions. Observations are derived from Sensor Subsystems 57 and 
59, with references to packet numbers and corresponding figures. 

At 12:15, during bunker reach, packet number 310 (Figure 11), packet number 315 (Figure 12), and packet 
number 330 (Figure 13) capture sensor responses. Figure 11 (packet 310) reflects the pre-transition state, 
where Gain and Coherency are stable, and SRE remains consistent, indicating minimal disturbance in the 
system. Angular Velocity (ω) at this stage is steady, suggesting rotational dynamics are not significantly 
impacting the observed signals. However, in Figure 12 (packet 315), Gain exhibits notable fluctuations, 
Coherency decreases, and SRE rises, pointing to increased energy demands as the system interacts with 
more resistant rock formations during the transition. These changes are accompanied by minor variability 
in ω, potentially amplifying signal disturbances. Figure 13 (packet 330) demonstrates post-transition 
stabilization, with Gain and Coherency normalizing as SRE decreases, indicating a return to more 
manageable energy conditions. Angular Velocity also steadies, reflecting improved operational stability. 

At 13:20, packet number 620 (Figure 14), packet number 637 (Figure 15), and packet number 657 (Figure 
16) highlight system behavior. Figure 14 (packet 620) shows pre-penetration conditions, where Gain and 
Coherency begin to vary slightly, and SRE starts to increase as rock resistance intensifies. Angular Velocity 
is stable, playing a secondary role in signal behavior. In Figure 15 (packet 637), representing the critical 
penetration phase, Gain shows significant variability, Coherency decreases sharply, and SRE peaks, 
reflecting the maximum energy demand needed to penetrate the formation. During this phase, any 
fluctuations in ω exacerbate instability by influencing how signals interact with the high SRE conditions. 
In Figure 16 (packet 657), post-penetration responses show stabilized Gain, improved Coherency, and 
reduced SRE as the system acclimates to the fully penetrated environment. Angular Velocity returns to a 
steady state, supporting uniform sensor performance. 

The relationship between Angular Velocity, Gain, and SRE is most evident in transitional phases, such as 
those represented by packets 315 and 637. Variability in ω during these phases magnifies the effects of 
increased SRE, leading to pronounced fluctuations in Gain and reduced Coherency. This dynamic interplay 
highlights the challenges of maintaining signal integrity under high-energy-demand conditions. 
Conversely, in non-transitional areas such as packets 310, 330, 620, and 657, a steady ω correlates with 
stable SRE, consistent Gain, and higher Coherency, reflecting a more controlled and predictable 
environment. 

In conclusion, Angular Velocity plays an amplifying role in transitional zones by intensifying the effects of 
rising SRE on Gain and Coherency. In non-transitional areas, steady ω and lower SRE contribute to system 
stability, underscoring the interconnected nature of these variables in both dynamic and steady-state 
operations. This analysis provides critical insights into the influence of SRE and rotational dynamics on 
sensor performance. 
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Figure 11: Packet number 310 for Sensor sub 57 and 59 along with their analysed Gain, Phase and Coherency function. 

 

Figure 12: Packet number 315 for Sensor sub 57 and 59 along with their analysed Gain, Phase and Coherency function. 
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Figure 13: Packet number 330 for Sensor sub 57 and 59 along with their analysed Gain, Phase and Coherency function. 

 

Figure 14: Packet number 620 for Sensor sub 57 and 59 along with their analysed Gain, Phase and Coherency function. 
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Figure 15: Packet number 637 for Sensor sub 57 and 59 along with their analysed Gain, Phase and Coherency function. 

 

Figure 16: Packet number 657 for Sensor sub 57 and 59 along with their analysed Gain, Phase and Coherency function. 
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3.4 Summary of Differences in Measurement and Calculation 

Force (F) measurements at the drill bit interface accurately represent tangential forces acting directly on 
the rock, whereas top tie-in sensors capture forces inflated by upstream mechanical losses. Similarly, 
rotational speed (ω) at the drill bit reflects true cutting dynamics, while upstream measurements are 
skewed by torsional oscillations and stick-slip effects. The rate of penetration (R), directly measurable at 
the bit, is often delayed or inaccurately inferred from top tie-in data. Consequently, SRE accuracy is higher 
at the drill bit interface but overestimated when derived from top tie-in data due to compounded 
mechanical losses. 
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4. KEY PERFORMANCE INDICATORS 

At an earlier stage of the project within the public deliverable report D1.5 a list of key performance 
indicators (KPIs) was defined. The KPIs were assigned with a ranking ranging from “Bronze” over “Silver” 
to “Gold” describing possible fulfilment stages of the respective KPI. The KPIs focused on aspects of the 
project such as historic and training data, what-if-analysis, drill bit sensors and formation interaction, live 
data, and advisory system user interface. The following table gives an overview of the KPIs defined in D1.5. 

KPI Definition Bronze Silver Gold 

H
is

to
ri

c 
&

 T
ra

in
in

g 
D

at
a  

Historic Drilling 
Data from 
Sedimentary 
Basin(s). 

O&G wells, low 
temperature, but full 
suite of data. Varied 
drilling technologies 
deployed. 

O&G Wells, plus 
hydrothermal 
geothermal brine 
wells. Possibly 
radiused and 
Extended 
horizontal section. 

O&G Wells, plus 
hydrothermal geothermal 
brine wells. Possibly 
radiused and Extended 
horizontal section. Varied 
drilling technologies 
deployed. Well issues 
including overpressure 
(fluid/gas flows 
encountered) and well bore 
stability issues (breakout). 

Historic Drilling 
Data from 
wells in active 
volcanic 
settings. 

Wells drilled with no 
issues, but complete 
suite of data. 

 

Wells drilled with 
partial/complete 
losses, some steam 
kicks and 
quenching. 

Wells drilled with “flash 
boiling”, partial to full loss 
of control, stuck/lost pipe. 

Historic Drilling 
Data from 
wells in 
igneous 
formations. 

Wells drilled with no 
issues, but complete 
suite of data. 

Wells drilled 
through fault 
zones, possible 
fluid Lost 
Circulation Zones. 
Both percussion 
and rotary drilling 
methods deployed. 

Wells drilled completely 
with percussion. 

Wells drilled completely 
with rotary. 

Drilling issues encountered. 

Historic Drilling 
Data from 
wells in meta-
sediments and 
igneous, 
contact/transit
ion zones. 

Wells drilled with no 
issues, but complete 
suite of data. 

Wells drilled 
through fault 
zones, possible 
fluid Lost 
Circulation Zones. 
Both percussion 
and rotary drilling 
methods deployed. 

Wells drilled completely 
with percussion. 

Wells drilled completely 
with rotary. 

Drilling issues encountered. 

Historic Drilling 
Data from 
wells in 
complex 

Wells drilled with no 
issues, but complete 
suite of data. 

Wells drilled 
through complex 
faulted and folded 

Possible previous human 
activity – mining, depleted 
hydrocarbon wells. 

Table 13: Key Performance Indicators from D1.5 
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geological 
settings – 
pyroclastic 
flows, igneous 
intrusions in 
sedimentary 
basins, Basalt 
flows over 
sediments etc. 

 formations. Well 
stability issues. 

Wells drilled through 
complex faulted and folded 
formations. Well stability 
issues. Well control issues. 

Possible previous human 
activity – mining, depleted 
hydrocarbon wells. 

SoA drilling methods. 

W
h

at
-I

f 
A

n
al

ys
is

 What-If 
Analysis of 
historical well 
data 

Poor data set(s) or 
data that has poor 
outcomes. What-If 
analysis provides full 
optimal outcome, 
fully validated in test 
wells 
(simulated/actual) 

Partial data set(s), 
with enhanced 
analysis, in variable 
geological settings, 
fully validated in 
test wells 
(simulated/actual) 

Full data set(s) available in 
complex geological 
setting(s) and training data 
fully validated in test wells 
(simulated/actual) 

D
ri

ll 
B

it
 S

en
so

rs
 

an
d

 F
o

rm
at

io
n

 

In
te

ra
ct

io
n

 New OptiDrill 
Sensors 

Provide real-time 
data for most drilling 
methods 

 

Provide real-time 
data for most 
drilling methods 
and operate with 
existing MWD 
systems 

Provide real-time data for 
most drilling methods and 
operate with existing MWD 
systems across complex 
and harsh geological 
settings 

Li
ve

 D
at

a  

OptiDrill 
Sensors 

Basic data 
transmitted in real-
time 

Lithological data, 
formation 
characteristics and 
basic drilling data 
transmitted in real-
time 

Complex drilling and 
predictive formation data 
transmitted in real-time 

OptiDrill 
Sensors & 
MWD/LWD 
systems 

Basic data 
transmitted and 
recorded in real-
time. Works in 
tandem for 
directional drilling 
programmes 

Works with other 
advanced down 
hole sensor 
systems e.g. seismic 
while drilling, 
Electron Pulse etc., 
to provide 
enhanced well data 
in real-time 

Able to work with complex 
drilling systems e.g. Rotary 
Steerable Systems and 
provide high quality real-
time data. 

A
d

vi
so

ry
 S

ys
te

m
 U

se
r 

In
te

rf
a

ce
  

Training 
Data/Real Data 

ML System provides 
basic, previously lag-
time, information in 
real-time 

ML system provides 
information with a 
“menu” of options 

ML system provides 
information and 
optimisation options in 
real-time 

Industry 
Adoption 

20% 30% >50% 
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Projects always define KPI’s in the early stages of the work, often combined with Technology Roadmaps, 
this helps both the team working within the project, understand and gauge how their work is progressing 
and to external viewers, how the work may become applicable to their requirements. As projects develop 
towards maturity, a better method of looking at things is through Objectives and Key Results (OKR’s). This 
allows both internal and external stakeholders to gauge results, measured against the project’s objectives. 

The objectives of the OptiDrill project were to develop a drilling advisory system that would benefit 
geothermal projects through ML/AI applications, using both historical and legacy data, as well as 
generating new data from field validation tests. Added to this were the developments of a user interface 
and downhole data sensors, that would operate within any BHA, and with any drilling system. 

Table 1 shows how the KPI’s were defined within the early stages and how they were ranked for the 
purposes of the project’s progress. Whilst some were missed, most of the key objectives were achieved, 
as the results clearly demonstrate. In the field validation tests undertaken at Bochum, drilling data 
generated in real-time was clearly shown on the user-interface, which tied in with the training data and 
the data captured on USB memory sticks, positioned within the sensor subs, recorded the lithology 
accurately, when analysed.  

These key results will now form the cornerstone for the next steps of product development within a 
commercial setting. Again, the objectives remain unchanged, but the key results will be matched to the 
original KPI’s, wherein training data either from offset wells, or from newly drilled wells, informs the 
drilling team of the lithology, the ROP prediction and anomalous occurrences, and allows them to optimise 
the parameters that they can control. It has already been demonstrated that the OptiDrill system is 
agnostic to drilling methodology and can be set within the BHA, easily and the user-interface is both 
simple to use and set-up. 

As the lithology prediction increases in accuracy and real-time data feeds into the ‘downhole picture’, it 
will enhance the completion programme of wells, through the avoidance of unnecessary drilling and for 
setting casings, screens etc., to enhance resource recovery, extend well life cycles and reduce associated 
risks going forwards. 
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5. CONCLUSION 

The second round of drilling for the field testing and evaluation of the OptiDrill software system has 
yielded further important insights into the performance of the OptiDrill software system. The retraining 
of the ROP and lithology prediction models based on data from the first wellbore showed promising 
results, particularly in terms of predictive accuracy and consistency across different drilling parameters. 
However, it could also be observed that retraining the ROP prediction model on the data from the first 
wellbore lead to a significantly more optimistic predictive behaviour of the model. This was caused due 
to the fact that the ROP in general was limited and on average significantly lower during the second field 
test, than it was during the first round of drilling and accordingly also within the data the model was 
trained on. Therefore, the MSE and ROP optimisation was also very optimistic regarding the predicted 
optimised ROP values and the respective calculated MSE values.  

While the ROP prediction model did demonstrate improved metrics compared to the first field test, the 
lithology prediction model encountered challenges, likely due to overfitting and a lack of diverse training 
data. The results achieved by the drilled lithology model could be improved in the sense that they were 
more plausible compared to those from the first field test, however the total predictive performance still 
remained unsatisfactory. One major finding in this regard is that although drilling data, even though it 
might be derived from drilling projects with very similar equipment and from very similar locations, can 
still differ quite significantly leading to challenges in creating accurate outputs with specialized machine 
learning models. Many factors play an import role in this regard, such as local geological properties, 
changes in the equipment used, or other additional limitation in the drilling strategy. The data from the 
Geostar 2 project for example, which was used for the model training for the first field test, was derived 
from a very similar location close to the Push-It drill site. However, a smaller bit diameter used and 
different local geological settings, posed a significant challenge for the lithology prediction model. The 
same accounted to the hardware differences between the first and the second wellbore of the Push-It 
project.  

One reasonable solution to tackle the issue of changing parameter ranges could be to enable the manual 
setting of minimum and maximum thresholds for the drilling process parameters used as inputs to the 
predictive model. This would be rather easy to implement, e.g. directly into the GUI. This way a custom 
scaler could be generated for the live adjustment of the processing of the incoming drilling data. At least 
for the ROP prediction the impact could be directly measured by observing and analysing the error made 
during the ROP prediction.   
Concerning the lithology prediction module one solution could be to further simplify the classification of 
the types of lithologies. However, since this is a very complex topic and the not only the geological 
settings, but also drilling equipment and operator behaviour play a very crucial role, this task would 
require significant additional amounts of data and efforts to be made. Under slightly more favourable 
conditions, as it has been proven in the respective deliverable reports from work package number 8, the 
approach applied in the current OptiDrill system prototype is valid and can deliver reasonable results. 
The anomaly detection module flagged up a significant proportion of the analysed data points as 
anomalous and might need some further refinements to make the classification less sensitive and prone 
detected normal data points as anomalous. Since not actual drilling problems were encountered during 
the two rounds of field testing, it is difficult to make a statement about the frameworks capability to 
detect a real drilling problem during the drilling operation. 

 

All in all, the second round of field testing the OptiDrill system did provide some additional valuable 
insights into the systems performance. Unfortunately, due to the changes in equipment between the first 
and the second wellbore, again the new drilling data did not fit to the data the supervised learning based 
predictive models were trained on. This shows one major limitation of the system in its current state. 
Nevertheless, just as during the first field test it could be proven that the system runs without any issues 
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in a real drilling environment and has huge potential to increase the overall performance and process 
awareness during a drilling operation.  
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