
 

This project has received funding from the European Union’s Horizon 2020 research and innovation action under grant agreement No 101006964 

 

  

 

 

 

D13.4: Validation of the OPTIDRILL system predictions 
using post-drilling logging and measurements 

 

Deliverable No D13.4 

Work package No. and Title WP13 OPTIDRILL system field-scale test and validation in a borehole 

Version - Status V1.0 – Final 

Date of Issue 18/12/2024 

Dissemination Level PUBLIC 

Filename D13.4_v1.0_FINAL 

 

 

Ref. Ares(2025)3969140 - 16/05/2025



 

OptiDrill – 101006964 | Deliverable D13.4 v1.2 | PUBLIC 2/23 

 

DOCUMENT INFO 

Authors 

Author Organization e-mail 

Matthew Arran BGS matarran@bgs.ac.uk 

Ashadul Hoque TVS ashadul@technovativesolutions.co.uk 

Andrew Kingdon BGS  aki@bgs.ac.uk 

Russell Parsons BGS rparsons@bgs.ac.uk  

   

Document History 

Date Version Editor Change Status 

12/12/2024 0.0 Matthew Arran Initiated Draft 

13/12/2024 0.1 Ashadul Hoque 
Added economic impact 
estimates 

Draft 

16/12/2024 0.2 Matthew Arran 
Added error analysis, 
conclusions, summary 

Draft 

16/12/2024 1.0 Andrew Kingdon Edits and added annex Draft 

18/12/2024 1.1 Matthew Arran Corrections Draft 

18/04/2025 1.2 Matthew Arran Corrections Final 

20.04.2025 1.2 Shahin Jamali Editorial review Final 

 

Disclaimer: Any information on this deliverable solely reflects the author’s view and neither the European 
Union nor CINEA are responsible for any use that may be made of the information contained herein.   

  

Copyright © 2021-2024, OptiDrill Consortium  

  

This document and its contents remain the property of the beneficiaries of the OptiDrill Consortium and 
may not be distributed or reproduced without the expressed written approval of the OptiDrill 
Coordinator, Shahin Jamali, FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN 
FORSCHUNG E.V. (Fraunhofer).  

(contact@optidrill.eu) 

 

 

mailto:matarran@bgs.ac.uk
mailto:ashadul@technovativesolutions.co.uk
mailto:aki@bgs.ac.uk
mailto:rparsons@bgs.ac.uk


 

 

OptiDrill – 101006964 | Deliverable D13.4 v1.2 | PUBLIC 3/23 

 

TABLE OF CONTENTS 

TABLE OF CONTENTS ..................................................................................................................................... 3 

LIST OF FIGURES ............................................................................................................................................. 4 

LIST OF TABLES ............................................................................................................................................... 4 

EXECUTIVE SUMMARY ................................................................................................................................... 5 

1. INTRODUCTION ...................................................................................................................................... 6 

1.1 Generalised Additive Models ....................................................................................................... 6 

2. ANALYSIS OF VARIATION IN PREDICTION ERROR .................................................................................. 7 

2.1 Data .............................................................................................................................................. 7 

2.2 Phase spaces................................................................................................................................. 7 

2.3 Errors ............................................................................................................................................ 9 

2.3.1 Errors in rate-of-penetration prediction .................................................................................. 9 

2.3.2 Errors in lithology class prediction .........................................................................................12 

2.3.3 Errors in drilling problem identification.................................................................................12 

2.4 Implications for economic impact estimates .............................................................................13 

3. ECONOMIC IMPACT ESTIMATES ..........................................................................................................14 

4. CONCLUSION........................................................................................................................................16 

5. ANNEX: Optidrill recommended data capture for safety and enhanced drilling ................................17 

5.1 Geological constraints on the delivery of the OptiDrill Project .................................................17 

5.2 Drilling data ................................................................................................................................18 

5.3 Rig data – surface measurements ..............................................................................................18 

5.4 Daily drilling reports ...................................................................................................................19 

5.5 Mudlogging.................................................................................................................................19 

5.6 LWD / Downhole logging requirements .....................................................................................20 

5.7 Fractured reservoirs – data acquisition .....................................................................................21 

5.8 LWD Down hole logging – Fractured reservoir ..........................................................................21 

5.9 Conclusion ..................................................................................................................................22 

6. REFERENCES .........................................................................................................................................23 

 

 

 

 

 



 

 

OptiDrill – 101006964 | Deliverable D13.4 v1.2 | PUBLIC 4/23 

 

LIST OF FIGURES 

Figure 1: Variation of weight on bit and lithology class with downhole depth ............................................ 8 

Figure 2: Variation of weight on bit and rate of penetration with downhole depth .................................... 8 

Figure 3: Variation of torque, rotation rate, and rate of penetration ........................................................... 8 

Figure 4: Variation of pump pressure, pump flow rate, and rate of penetration ......................................... 9 

Figure 5: Relationship between generalisation for TRQ and RPM, and error ............................................... 9 

Figure 6: Relationship between error in ROP predictions and the degree of generalisation required ......10 

Figure 7: Components of the best-fit GAMs for model prediction errors...................................................11 

Figure 8: Confusion matrix for lithology prediction. ...................................................................................12 

Figure 10: Logit influence of Depth on the probability of a datapoint being identified as anomalous ......13 

Figure 9: Datapoints identified as anomalous, with Depth and WOB.........................................................13 

 

 

 

LIST OF TABLES 

 

Table 1: Economic analysis hypothetical power plant ................................................................................14 

Table 2: Rock formation in the case study ..................................................................................................14 

Table 3: Drilling performance data ..............................................................................................................15 

Table 4: Summary of the economic impact evaluation ...............................................................................15 

  



 

 

OptiDrill – 101006964 | Deliverable D13.4 v1.2 | PUBLIC 5/23 

 

EXECUTIVE SUMMARY 

This deliverable reports on work conducted towards deliverable 13.4: validation of the OPTIDRILL system 
predictions, through examination over field tests of variability in predictions’ accuracy. Due to issues 
encountered in other work packages, field testing was limited to the drilling of two shallow boreholes at 
a site in Bochum, Germany, as described in deliverable report 13.1. The machine-learning-based models 
from work packages 7, 8, and 9 were applied to predict both the Rate Of Penetration (ROP) during drilling 
and the class of lithology being drilled (Lithology), and also to identify anomalous datapoints that were 
potentially indicators of drilling problems. 

Here, we describe analysis of results from these field tests, linking errors in predictions to the datasets 
from which models make these predictions. Specifically, we compare the phase spaces of the datasets 
used to train the ROP and Lithology prediction models to the phase spaces of the datasets to which the 
models were applied. We examine the generalisation error that arises from differences between these 
phase spaces and, by fitting Generalised Additive Models, link variation in subsets of input parameters to 
variability in both the magnitude of ROP prediction errors and the likelihood of erroneously identifying 
drilling problems. This quantifies influences on the generalisation error and indicates where additional 
data may decrease this error. 

The analysis demonstrates that model predictions’ accuracy varied significantly over each field tests and 
between the two tests, with generalisation error increasing as the data with which predictions were made 
differed more from the data with which models were trained. Variation in accuracy was substantial even 
over short intervals of drilling in similar conditions. Consequently, the accuracy observed in field tests is 
very unlikely to be representative of accuracy in different drilling conditions, using different equipment at 
much greater depths. 

Nevertheless, we use the errors in ROP prediction in field tests, with various simplifying assumptions, to 
estimate the potential economic impact of the OPTIDRILL system’s parameter-recommendation 
subsystem, based on the ROP prediction model. This suggests that the system could reduce the cost of 
drilling a 5-km deep geothermal well by between 2.4% and 6.0%. 

Achieving such cost reductions, and those associated with effective lithology prediction, will require new 
model training for new drilling conditions, and hence the development of a corpus of standardised 
geothermal well drilling data which can be used for this training. For further development of drilling 
problem detection, a native-digital standard for propagation of Daily Drilling Reports is essential. Annex 1 
contains recommendations for geothermal drilling datasets and data standards, so that future geothermal 
drilling programmes are informed by standardised benchmark datasets.  
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1. INTRODUCTION 

Work package number 13 deals with the validation in a field-scale test of the OPTIDRILL drilling advisory 
system. Deliverable report 13.1 describes the field tests, conducted at Fraunhofer IEG, Bochum, while 
deliverable reports 13.2 and 13.3 examine the accuracy of the machine-learning-based systems developed 
in work packages 7, 8, 9, and 11, for predicting rates of penetration (ROP) and lithology classes, identifying 
drilling problems, and recommending drilling parameters. This report examines the variation of accuracy 
over each field test, indicating the reliability of the systems when applied in new circumstances and 
suggesting means of improving that reliability. The report further estimates the potential economic 
impact of applying the parameter-recommendation system to geothermal well drilling, if accurate.  
 
Due to challenges encountered in other work packages, the field tests differed from those envisaged in 
the original project proposal. Firstly, acoustic emission data were not available as inputs for the model 
training or development of the ROP and lithology-prediction models. Therefore, these attributes could 
not be used in the derived drilling recommendation system. Secondly, the system for drilling problem 
identification was developed using legacy data from UK onshore hydrocarbon exploration, with depth 
resolution different from that of the field tests. Thirdly, a lack of data prevented development of any 
advisory system for drilling by jetting. Finally, boreholes were chosen for system testing based on 
opportunity and the drilling opportunities available, and did not represent the full range of drilling 
conditions to which the drilling advisory system was intended to be applied. Consequently, the average 
accuracy of system predictions during the field tests is unlikely to be representative of such prediction 
accuracy under other conditions, making it essential to understand that variability. 
 
Understanding of accuracy’s variability requires quantitative models that are both general and 
interpretable. Complex physical systems connect lithology, drilling parameters, rates of penetration, and 
drilling problems. These involve strong non-linearities and multiple interactions, and the machine-
learning-based systems used to model aspects of these systems include correspondingly complex, non-
linear interactions. Therefore, discrepancies between the outputs of the physical and machine-learning-
based systems will also depend non-linearly on multiple interacting parameters, and models for these 
inaccuracies must be sufficiently general to be capable of describing such dependence. In order for 
accuracy’s variability to be understood, rather than just described, and to ensure that results are 
transferable to contexts that may be quite different, such a model must also be interpretable, indicating 
the individual importance and effects of small subsets of parameters. One class of models that offers this 
balance of generality and interpretability is that of Generalised Additive Models (GAMs). 

1.1 Generalised Additive Models 

Motivated by the theory of smooth function approximation, a GAM supposes that an underlying quantity 
𝑦 is a multivariate function of inputs 𝒙, that exists in the form: 

𝑦 =  𝑓(𝒙) =  Φ(∑ 𝜙𝑗(𝑥𝑗)𝑛
𝑗=1 ), 

for smooth, monotonic function Φ and smooth functions 𝜙𝑗  (Hastie & Tibshirani, 1990). Such models can 

represent an extremely broad class of functions 𝑓, including strong nonlinearities, while permitting the 
effects of individual parameters to be interpreted, via the functions 𝜙𝑗. Permitting functions of the form 

𝜙𝑗,𝑘(𝑥𝑗 , 𝑥𝑘) in the sum further extends the class of functions 𝑓 that can be represented, to include 

interactions between pairs of input parameters, while retaining interpretability of these interactions. 

To implement a GAM in practice involves using one of many available software packages. The function Φ, 
a statistical model for errors in 𝑦, and the input parameters of concern are specified, including any 
interaction terms. The functions 𝜙 are estimated statistically, by supposing each a weighted sum of a 
specified class of basis functions, fitting to observations for a range of different basis sizes, and selecting 
the optimum basis size using a criterion such as the generalized cross-validation statistic.  
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2. ANALYSIS OF VARIATION IN PREDICTION ERROR 

2.1 Data 

The drilling analysis was conducted using three datasets: 

• files of the Geostar data (in CSV format) with which the first rate-of-penetration and lithology 
prediction models, based on supervised machine learning, were trained 

• a file of the field test data (in EXCEL format) to which the first supervised-learning models were 
applied, together with the unsupervised-learning-based drilling-problem-identification model, 
and with which the second supervised-learning models were trained 

• a file of the field test data (in EXCEL format) to which the second supervised-learning models were 
applied, alongside the drilling-problem-identification model. 

Derivation of the Geostar dataset is described in the reports for work packages 7 and 8, while the 
derivation of field test data, including of advisory system predictions, are described in the report for 
deliverable 13.1. Importantly, field tests were conducted close to the sites from which Geostar data were 
collected, with similar drilling and measurement equipment, but with a larger bore drill bit and 
consequently lower rates of drill string rotation. The second field test was similar to the first, but with drill 
collars added to the drill string, increasing the weight immediately above the bit and so stabilising drilling. 
In neither test were any significant drilling problems encountered. 

Datasets include: 

• drill bit downhole depth, typically recorded at 1 cm intervals (Depth, in metres),  

• drill string rotation rate (RPM, in rotations per minute)  

• rate of penetration (ROP, in metres per hour) 

• weight on bit (WOB, in kilonewtons)  

• torque applied to the bit (TRQ, in kilonewton-metres)  

• drilling fluid pumps' pressure (P_P, in kilopascals)  

• pump flow rate (MFI, in litres per minute) 

• for the first field test, the true lithology class, inferred after the end of operations (Lithology) 

Also recorded for each depth are the machine-learning-based models' predictions for: 

• ROP (ROP_pred, in metres per hour), from supervised learning 

• lithology (Lit_pred), from supervised learning 

• whether the datapoint is anomalous (Anomalous), from unsupervised learning 

2.2 Phase spaces 

Figure 1 to Figure 4 indicate the phase spaces of the three datasets, via projections onto related subsets 
of parameters. This permits, for each of the two supervised-learning models, the values of measurements 
with which the model was trained to be compared to the values to which the model was applied. 

Whilst data from Geostar wells and data from the first field test include similar values of Depth and WOB, 
TRQ in the first field test was generally higher than that for Geostar well drilling, and RPM generally lower 
These are both a direct consequence of the larger drill bit size. In addition, values of P_P and MFI were 
higher in the first field test than almost all values recorded during Geostar well drilling. Consequently, 
there is no overlap between the phase space of the Geostar wells and that of the first field test. Predicted 
ROP for the first field test are therefore necessarily extrapolations, even though ROP lies within the range 
of Geostar drilling. For Lithology prediction, meanwhile, the 'Claystone/Sandstone' class was unobserved 
during Geostar well drilling, so that its prediction requires further extrapolation. 
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Figure 1: Variation of weight on bit and lithology class with downhole depth 

Figure 2: Variation of weight on bit and rate of penetration with downhole depth 

Figure 3: Variation of torque, rotation rate, and rate of penetration 
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Figure 4: Variation of pump pressure, pump flow rate, and rate of penetration 

 

 

 

 

 

 

 

 

 

 

The phase spaces of measurements from both the first and second field tests overlap, but also differ 
significantly. TRQ, P_P, and MFI resulted in generally similar values, but were more variable during the 
second field test than the first. WOB values were generally lower, though within the range of the first field 
test, while RPM values were similar and Depth values mostly identical. Correspondingly, ROP values in the 
second field test were within the range of those in the first field test, if generally lower. The absence of 
true lithology data for the second field test prevents comparison with the first field test. 

2.3 Errors 

2.3.1 Errors in rate-of-penetration prediction 

As the differences between the phase spaces of the three datasets suggest, the two models’ predictions 
for the rate of penetration are subject to generalisation error. Figure 5 demonstrates the error that arises 
when TRQ and RPM values, used by each of the two models to predict ROP, lie outside the range of values 
with which the corresponding model was trained. Specifically, in the first field test, the lowest values of 
TRQ and highest values of RPM are the furthest outside the range of values in the Geostar dataset used 
for model training, and are associated with significant underestimates of ROP. In the second field test, 
meanwhile, RPM values higher than those observed in the first field test were associated with significant 
overestimates of ROP, and much lower RPM and TRQ values were associated with ROP underestimates. 

Figure 5: Relationship between generalisation for TRQ and RPM, and error 
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The degree of generalisation required for ROP prediction can also be quantified and linked to the error. 
Normalising a training dataset’s datapoints of WOB, TRQ, RPM, P_P, and MFI values, using the maximum 
and minimum values within the dataset, the mean of the distances between a normalised datapoint and 
its three nearest neighbours represents the datapoint’s proximity to others, and the 99th percentile of the 
mean distances represents the degree of generalisation required during training. The degree of 
generalisation required for ROP to be predicted for a given datapoint is then calculated by applying the 
same normalisation, and calculating the mean of the distances between the normalised datapoint and 
the normalised training dataset’s three nearest datapoints. Figure 6 indicates the high degree of 
generalisation required in the first field test and the consequent generalisation error, together with 
increases in error in the second field test where the degree of generalisation required is higher. 

Fitting Generalised Additive Models permits errors in ROP predictions to be linked to specific changes in 
inputs, although with caveats. GAMs for the errors in each machine-learning-based model were fitted 
using the R package mgcv (Wood, 2017), using the model 

𝑅𝑂�̂� − 𝑅𝑂𝑃 = ϕ0 +  ϕ1(𝑊𝑂𝐵) + ϕ2(𝑇𝑅𝑄, 𝑅𝑃𝑀) + ϕ3(𝑃𝑃 , 𝑀𝐹𝐼) + ϵ 

for constant ϕ0, scalar function ϕ1 and tensor functions ϕ2, ϕ3 composed of cubic regression splines, 
and independent, identically distributed errors ϵ. Since errors will not have been independent, with 

autocorrelation in 𝑅𝑂�̂� and 𝑅𝑂𝑃, we sought to avoid overfitting by constraining the maximum number 
of degrees of the scalar and tensor functions to be 10 and 25, then selecting the optimal number of 
degrees of freedom using generalised cross validation. GAMs were fitted separately for the results of the 
first and second field tests, with the corresponding fitted values for 𝜙0 0.13±0.03 and 1.024±0.016, 
respectively, while the fitted functions are shown in Figure 7. After fitting, the GAMs explained 41% and 

49% of the variance of 𝑅𝑂�̂� − 𝑅𝑂𝑃, respectively. However, the incorrect error model makes estimates of 
standard error inaccurate, decreasing the reliability with which results can be transferred. Furthermore, 
the GAM is informative only about the fairly narrow range of values for which data is available. 

 

Figure 6: Relationship between error in ROP predictions and the degree of generalisation required, quantified by the mean of 
distances to the three nearest neighbours in the training dataset, after normalisation. Dashed lines represent the 99th percentile 

of corresponding means within the training dataset. 
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The fitted GAMs are not easy to interpret, but broadly confirm the intuition developed earlier: errors grow 
in magnitude as the datapoints with which each machine-learning-based model makes predictions differ 
more from the datapoints with which the model was trained. The most significant effects are of variation 
in TRQ and RPM, with error contributions changing most rapidly in the direction away from the training 
dataset’s phase space: with increasing TRQ and decreasing RPM for the first field test, and with increasing 
TRQ in the second field test. The next most significant effect is of WOB in the first field test, with high 
contributions to error at the high WOB values that are rare in the Geostar dataset. The effect of P_P and 
MFI, meanwhile, is hard to determine, with little variation in their values over the field tests. Better 
understanding of how pump pressures and flow rates affect rate-of-penetration prediction error would 
require a wider exploration of the parameter space during drilling. 

 

 

𝜙
1

 

𝜙
1

 

𝜙2  𝜙2  

𝜙3  𝜙3  

Figure 7: Components of the best-fit GAMs for model prediction errors. In the top panels, solid lines indicate function values, 
dashed lines standard errors, and lines on the x-axis the values of datapoints. In the remaining panels, black contours indicate 

function values, coloured lines standard errors, and dots datapoints’ values. 



 

 

OptiDrill – 101006964 | Deliverable D13.4 v1.2 | PUBLIC 12/23 

 

2.3.2 Errors in lithology class prediction 

Figure 8 demonstrates the correspondence between the true lithology classes and those predicted by the 
machine-learning-based model, for the single field test for which true lithology classes are available. 

By far the most frequent error is the identification of Claystone/Sandstone as Claystone, with no 
Claystone/Sandstone correctly identified. This is an inevitable consequence of the lithology prediction 
model being based on supervised machine learning, predicting categorical classes rather than the 
underlying geology, and having been trained with the Geostar dataset, in which no Claystone/Sandstone 
lithology class appeared. A model based on supervised learning can only make predictions based on the 
data used to train it, while a model trained to predict only categorical classes is unable to infer any 
connection between the class ‘Claystone/Sandstone’ and the classes ‘Claystone’ or ‘Sandstone’. 
Consequently, the absence of the Claystone/Sandstone class from the training data prevents the lithology 
prediction model from predicting it. 

The next most frequent error is the identification of Sandstone as Claystone. The lithology prediction 
model performs better than random at Sandstone identification, predicting this class for 2% of actual 
Sandstone compared to 0.2% of actual Claystone and 0.1% of Claystone/Sandstone, but Claystone is 
predominant in the Geostar dataset used for training, so the model preferentially identifies this lithology 
class. As a result, the model correctly predicts Sandstone too rarely for a GAM to provide information 
about the factors that influence such predictions. 

2.3.3 Errors in drilling problem identification 

Since no significant drilling problems were encountered during field testing, the errors in drilling problem 
identification are the ‘false positives’: identifications of an anomalous datapoint as an indicator of a 
potential drilling problem. Variability in error is therefore variability in the probability of identifying 
datapoints as anomalous, as indicated in Figure 9. 

The drilling problem identification model is based on unsupervised machine learning, and so no external 
training dataset determines variation in the frequency with which datapoints are identified as anomalous. 
Instead, the model identifies as anomalous those datapoints that are easily isolated from all previous 
datapoints from lesser depths in the same borehole. Datapoints with extreme values or in hitherto 
unexplored regions of the parameter space will therefore be identified as anomalous by design, and the 
variability in identification rates that is of interest is that with Depth. 

To examine variability in identification rates, the fitted GAM specified that a given datapoint is identified 
as anomalous with probability dependent on constant ϕ0 and scalar function 𝑠 composed of thin-plate 
regression splines: 

𝑝 = {1 +  exp[−ϕ0 − 𝑠(Depth)]}−1 

Figure 8: Confusion matrix for lithology prediction. 
C stands for Claystone and S for Sandstone. 
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Again, the fit was conducted with R package mgcv (Wood, 2017) and with the maximum number of 
degrees of freedom constrained, to 10, but now a single GAM was fitted to the results of both field tests, 
since the unsupervised model was identical in each case. The best-fit intercept was 𝜙0 =  −1.39 ± 0.02, 
while Figure 10 represents the best-fit function 𝑠(Depth). 

The results of the GAM fit should again be approached with caution, but it is clear that the machine-
learning-based model is more likely to identify datapoints as anomalous at shallow depths, and less likely 
thereafter. This results from the growth with depth of the information available to the model: any region 
of parameter space appears anomalous when observed for the first time, but does not after repeated 
occurrences. And as drilling continues, the probability of a new region of parameter space being observed 
in the normal course of drilling will decrease. Consequently, the machine-learning-based model is more 
likely to falsely identify datapoints as potential drilling-problem indicators at shallow depths. 

2.4 Implications for economic impact estimates 

The previous section demonstrates that model predictions’ accuracy varied significantly over the two field 
tests, with generalisation error increasing as the data with which predictions are made differed more from 
the data with which models were trained. Variation in accuracy was substantial even over short intervals 
of drilling in similar conditions. Consequently, the accuracy observed in field tests is very unlikely to be 
representative of accuracy in different drilling conditions, using different equipment at much greater 
depths. To estimate the potential economic impact of the OPTIDRILL advisory system, however, it is 
necessary to make extreme simplifying assumptions. 

Figure 10: Datapoints identified as anomalous, with Depth and WOB 

Figure 9: Logit influence of Depth on the probability of a datapoint being identified as 
anomalous, in the best-fit GAM 
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3. ECONOMIC IMPACT ESTIMATES 

The OPTIDRILL project developed a drilling advisory system utilising machine learning methods to predict 
ROP, lithology, drilling problems, and unite those methods under one system for drilling process 
optimisation and intelligent decision making. The drilling advisory system advises drillers on optimum 
drilling parameters to improve efficiency. The drilling advisory system recommended drilling parameters 
aim to reduce mechanical specific energy (MSE), i.e., the most efficient drilling in terms of energy 
consumed. MSE is a key performance metric representing the energy required to remove a unit volume 
of rock (Xiao, Liu, & Tan, 2019). It provides a measure of the efficiency of the drilling process, helping 
operators assess and optimise the performance of the drill bit and overall drilling system. Optimising MSE 
minimises wasted energy during drilling, reducing fuel usage and carbon footprint. MSE minimisation 
helps in maximising ROP (rate of penetration) and minimising wear on tools, which minimises costly 
replacements and delays. It also reduces non-productive time (NPT) through better drilling efficiency, 
lowering operational expenses, including rig rental, fuel, and personnel costs. 
 
A hypothetical greenfield geothermal power plant was used to evaluate the economic performance of 
OPTIDRILL drilling advisory system. The goal of the economic analysis was to evaluate drilling OPTIDRILL 
optimisation technology. Therefore, we have kept other sub-systems of the geothermal plant the same. 
Also, we did not consider transmission lines in the analysis. 
 

Table 1: Economic analysis hypothetical power plant 

 Case study 
Resource temperature 200°C 
Well depth 5 km 
Conversion technology Double flash 
No of production wells 10 
Project life 30 years 
Capacity factor 95% 
Transmission line length 0 km 

 
The rate of penetration (ROP), i.e., how fast we are drilling a wellbore and bit lifetime, depends on rock 
formation and drilling depth. The economic benefits of new drilling technologies come from drilling faster 
or replacing worn-out drill bits less often. Table 2 presents the rock formations to 5500 meters in the case 
study locations. The upper 1000 meters in the Upper Rhine Graben is different soft rock types; the rest is 
hard rock.  Table 3 presents rock types, ROP and bit life collated from literature review. OPTIDRILL demo 
encountered soft rocks Claystone and Sandstone. Hence, we lack data on the ROP improvement in e.g. 
Granite from the drilling advisory system. Therefore, the analysis considers ROP improvement in line with 
the Bochum demonstration. Though we expect drill bit lifetime also improved due to MSE optimisation, 
we have assumed same bit lifetime for the analysis as the data gathered from the Bochum demonstration 
was insufficient to evaluate drill bit lifetime improvement. 
 

Table 2: Rock formation in the case study (Genter, et al., 2016)  

Rock formation Depth (meter) 
Tertiary and Jurassic sediments 750 
Keuper (dolomite, shales, or 
claystone) 

50 

Shelly limestone 200 
Coloured sandstone 400 
Granite 4100 
Basalt rock 4500 
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Table 3: Drilling performance data (Baujard, et al., 2017) (Hackett, Blankenship, & Robertson-Tait, 2020) (Thorhallsson, 
Matthiasson, Gislason, Ingason, & Palsson, 2003) (Deliverable report D9.1) 

Rock type Drilling technology ROP 

(meter/hr) 

Drill bit lifetime (meter) 

Existing 

technology 

OPTIDRILL Existing 

technology 

OPTIDRILL Existing 

technology 

OPTIDRILL 

Tertiary and Jurassic 

sediments 

Tricone 

OPTDRILL 

drilling 

advisory 

system 

4.5 

ROP 

improvement 

in line with 

Bochum 

demonstration 

2000 
Same as 

existing 

technology 

Keuper (dolomite, 

shales, or claystone) 

 Shelly limestone 

 Coloured sandstone 

Granite PDC 7.16 164 

 
Wellbore drilling cost depends upon the speed at which the drill bit penetrates rocks (ROP) and the cost 
and time spent replacing damaged drilling components like the drill bits. Services like drill rigs are rented 
daily, and faster drilling reduces such costs. Therefore, drilling technology able to penetrate rocks faster 
and dill longer without replacing components will spend more time on actual drilling and reduce overall 
drilling costs. ROP and bit life is dependent on the rock formation being drilled. Progress is slower in harder 
rocks, and lifetime is also lower. Therefore, our wellbore cost model must consider rock formation 
encountered in every section of the wellbore and the expected ROP and life there.  
 
The levelised cost of energy (LCOE) methodology was used in the economic evaluation. LCOE estimates 
the representative cost of generating electrical power from a plant over its lifetime and is used to compare 
different methods of electricity generation and is the average revenue per unit of electricity that would 
be required for a power plant to break even. Table 4 summarises the results of the economic impact 
evaluation. It considers predicted ROP from the OPTIDRLL drilling advisory system in addition expected 
ROP which is calculated based on the recommended drilling process parameters. Expected ROP value is 
theoretical and based on the model predictions. We have used the following formula to calculate the 
expected ROP (Teale, 1965): 
 

𝑀𝑆𝐸 =  
𝑊𝑂𝐵

𝐵𝑖𝑡 𝐴𝑟𝑒𝑎
+  

2𝜋∗𝑅𝑃𝑀∗𝑇𝑜𝑟𝑞𝑢𝑒

𝐵𝑖𝑡 𝐴𝑟𝑒𝑎∗𝑅𝑂𝑃
  

 
 
The economic impact evaluation shows that with OPTIDRILL drilling advisory system, wellbore drilling 
costs reduce by 2.43% - 6.03%, and drilling time reduces by 3.31% - 8.22% contributing to the reduction 
of LCOE (1.69% - 4.19%). This reduction comes from increased drilling speed resulting in less time to do 
actual drilling. Due to the shallow nature of the demonstration drilling at Bochum, Germany we could 
gather data on the ROP improvement only, not lifetime improvement due to less wear. Therefore, though 
we expect equipment lifetime to improve due to less wear, we considered ROP improvement form the 
OPTIDRILL drilling advisory system only.  
 

Table 4: Summary of the economic impact evaluation 
 SOA Predicted ROP Estimated ROP 

LCOE €/ kWh 0.220 0.217 -1.69% 0.211 -4.19% 

Drilling €/ kWh 0.093 0.091 -2.43% 0.088 -6.03% 

Drilling time Day/well 39.83 38.51 -3.31% 36.56 -8.22% 

Well Cost €million per 

well 

16.32   15.92  -2.43%  15.34  -6.03% 
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4. CONCLUSION 

Despite challenges in other work packages, the OPTIDRILL drilling advisory system was successfully 
applied in two field tests. In each of these tests, the system provided predictions for the rate of 
penetration during drilling (ROP) and the lithology class being drilled (Lithology) derived using models 
based on supervised machine learning; identification of potential drilling problems derived using a model 
based on unsupervised machine learning; and recommendations for drilling parameters derived from the 
ROP prediction model. 

The accuracy of model predictions varied significantly over the field tests, in ways that corresponded to 
the data available to each model. In both tests, the phase space of the data with which the ROP prediction 
model was trained did not cover the phase space of the data to which the model was applied, and the 
model predictions were subject to higher generalisation error when data were from new regions of the 
phase space. In the first test, for which actual lithology was recorded, the Lithology prediction model failed 
to identify a significant lithology class - a direct consequence of this class being absent from the data with 
which the model had been trained - and overpredicted the lithology class that was most frequent in the 
training data. Meanwhile, the drilling problem identification model was more likely to identify datapoints 
as anomalous at shallow depths, when less data was available to indicate the standard range of 
parameters during normal drilling. 

Because of the variability of model prediction accuracy within the field tests, estimates of accuracy in 
other conditions are unreliable. The magnitudes of ROP prediction errors differed substantially even 
within each field test, so that changes in drilling conditions are likely to change the error magnitude 
substantially. Consistent accuracy in such a model’s application will depend on extensive, representative 
training data, especially for the Lithology prediction model, with specific requirements described in the 
Annex, section 5. The difficulty of gathering representative data is indicated by the variation between 
parameters’ phase spaces even when drill sites were nearby, drilling equipment similar, and drilling 
measurements the same. Furthermore, the system’s accuracy in the observational setting that was 
explored during the field tests may differ from its accuracy when used to make interventions: the 
behaviour of drilling operators may lie in its own phase space, with generalisation error when the drilling 
recommendation system leads to behaviour outside that normal behavioural range. 

However, simplifying assumptions can be made to estimate the potential economic impact of the 
OPTIDRILL advisory system. Considering only improvements in ROP due to the recommendation system, 
assuming that model predictions for these improvements are correct, and taking the improvements 
predicted during field tests to be representative, the advisory system could reduce the cost of drilling a 5-
km deep geothermal well by between 2.4% and 6.0%. 
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5. ANNEX: Optidrill recommended data capture for safety and 
enhanced drilling 

5.1 Geological constraints on the delivery of the OptiDrill Project 

Geothermal heat from igneous provinces and sedimentary basins presents significant opportunities for 
heat extraction in many European countries. OptiDrill seeks to evaluate mechanisms for optimising drilling 
of deep geothermal wells to support both electrical power generation and to support district heating 
networks. Take-up of geothermal opportunities have been slow across Europe. Many of these prospects 
are theoretical, rather than tested due to the high costs in developing geothermal wells to test heat 
reserves at significant depth.   

Minimising the costs of drilling through optimising the processes for geothermal resource extraction is a 
complex business opportunity with long payback periods. Geothermal heat extraction in basins requires 
drilling through several vertical kilometres of over burden to hopefully encounter hot fluids in permeable 
strata at significant depths which have extensive reserves of heat which will be continuously refreshed. 
The cost of rig rental for rigs capable of drilling to thousands of metres depth may reach several €100000 
per week, without the immediate pay off opportunities that can be found if significant oil reserves are 
uncovered by drilling operations. Minimising interruptions and lost-time incidents to the drilling process 
is therefore highly important to delivering effective cost control of the drilling process. Therefore, 
examining prior drilling in the region into similar strata will allow important insights to be derived. 

Given the low numbers of geothermal wells available to inform this process, it makes sense to examine 
data from the other deep subsampling processes in the subsurface. The oil industry also locates reserves 
of fluid at depth in permeable so presents a useful analogue. In countries like the UK, they provide the 
only ubiquitous dataset of drilling and geological data into significant depths that encounter strata of 
relevance to geothermal prospectivity. Where geothermal boreholes are drilled in Europe targeting deep 
sedimentary strata, likely candidate for development as geothermal opportunities are strata which are 
productive for oil at depths of 1.5 to 2.5 kilometres but in deeper parts of the sedimentary basins. The 
presence of recoverable oil or gas indicate that there are permeable zones from which fluids/ gases can 
be recovered. The extension of these same strata into the deepest parts of the sedimentary basin are 
therefore amongst the best possible locations for identifying zones of maximum potential permeability 
sufficient to deliver continually refreshed hot fluids. 

Recent changes in European government data release regulations from the oil industries, and also coal 
and minerals industries, means that are now publicly accessible datasets of historic “legacy” drilling and 
geological data. The UK and Netherlands have particularly enlightened data regulation with wholly open 
release. For geographic reasons this report concentrates upon the data made available under UK data 
release regulations but is applicable to other data in other locations.  

Assessment of subsurface properties and the associated drilling parameters is therefore much easier than 
it would have been in the pre-public data release period, or in jurisdictions where such data are not 
routinely available. However, the efficacy of work undertaken within the OptiDrill project has been 
hampered by the lack of standardisation or data available for such analysis.  This report summarises best 
practise and the nature of optimum legacy datasets for future studies, thereby enabling the insights 
developed using OptiDrill to be used most effectively.  
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5.2 Drilling data   

During the process of drilling a geothermal well significant amounts of data are generated, whether this 
be data derived from the rig itself, or logging data created by specialist tools lowered into the well or 
incorporated in the drill string’s borehole head assembly (BHA), to characterise the lithology and fluids 
present.  

The rig data serves two purposed, parameters such as weight on bit (WOB) pump strokes (RPM), 
standpipe pressure (SPP) and torque (TRQ) provide an insight into the performance of the bottom hole 
assembly (BHA) allowing the driller to optimise the parameters to achieve better drilling performance.  

The second use of the data is around safety, mud weight plays a critical role in maintaining hole condition 
while also preventing unwanted fluids from entering the borehole (Kick) and while drilling is closely 
monitored for volume changes and gas content. 

The second data stream is the downhole logging of the wellbore, this is generally defined by the client, 
and is designed to answer specific questions about the downhole properties such as porosity, 
temperature, net to gross, stress field and permeability that has been encountered by the well. Often this 
data isn’t available until the well has been completed and the rig moved off location. However, 
increasingly some of this data is captured real time using specialist tool contained within the BHA, 
providing valuable insights such as well trajectory, casing point decisions and potential section that might 
be viable for coring that can be transmitted to the well head in real time using acoustic pulses through 
the mud column. 

There is a third data stream that sits between the rig data and the downhole logging, Mudlogging is 
primarily a geological service, but also provides additional back up sensors to the ones already installed 
on the rig, with the most important on being gas detection. Unlike the rig data, the mudlogging data is a 
constant monitoring service and produces a continuous digital copy of the data combined with a 
description of the geology derived from the drill cuttings taken from the shale shakers.  

The abundance of data that is recorded is captured in a variety of ways., and ultimately is used to define 
best practices for follow on well drilling campaigns. At the end of operations, and within 6 months, under 
current UK (and Norwegian) regulations it is a requirement that all data be uploaded to a publicly 
searchable online database (unless commercially sensitive). Under UK regulations almost all  such drilling 
and geological data is openly released.  

5.3 Rig data – surface measurements 

The drilling rig monitors all aspects of the mechanical operations, from the mud pump pressures and 
strokes, through to the torque and weight on bit, mud pumped in and mud returned. all are served 
electronically on screens to the drillers, and other remote staff. Monitoring of these parameters can be 
an early indication of downhole issues such as drill pipe washouts, stick slip, rotational torque. While this 
data is vital during drilling in real time, its greater value comes when plotted as continuous logs along with 
some of the mudlogging data. As a minimum, the WOB, ROP TRQ and SSP should be plotted along with 
GR, Mud gas both total and chromatographic and a simplified lithology column along with cuttings 
descriptions.  

To optimise further drilling in the development, all measurements taken at the rig should be stored 
digitally, traditionally this is a service that is offered by the mudlogging company and is detailed below in 
the CPI log plot section.  

These outputs are typically similar from one contractor or operating company to another allowing their 
easy ingestion into drilling data tools.  
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5.4 Daily drilling reports 

A major problem within the OptiDrill project has been the lack of consistency experienced in Daily Drilling 
Reports (DDR) requiring them to be simplified and standardised before any   ingestion into data tools to 
be used for understanding their mechanics and logistics of drilling processes des. This section describes 
typical attributes of such a report but which are not usually followed exactly.  

Data captured by the report should include, but not necessarily limited to the following:  

• General: Rig name, well name, location spud date and operator 

• Crew details: number of crew, shift details and positions  

• Drilling: progress made in 24 hours and current depth 

• Type of drill pipe, both currently in the hole and stored in the racking system 

• Casing data, both in the hole and stored at the well site   

• Mud properties in the hole and mud chemicals available on board 

• Current BHA configuration 

• Geological : formations encountered along with formation tops  

• Operations: a brief overview of the last 24 hours 

• Equipment: general condition, planned maintenance  

• Safety: any incidents recorded, planned emergency drills, environmental spills and issues, 

including how to address them. 

• Forward: the following 24 hour plans and operations  

The DDR is designed to be an all-encompassing resource that can be used by multiple disciplines. 
Contractors need to be able to follow the rig operations in preparation to deliver both staff and materials 
in timely manner. Safety officers will need to plan safety drills, often related to a specific up coming 
operation, such as well testing or running casing. The daily drilling report should be distributed to anyone 
who has a business interest in the well. An example of a standard DDR is included in Appendix 1.  

5.5 Mudlogging 

The mudlogging unit at the rig site is a high-tech environment harvesting data from the drilling process 
along with physical data in the sense of rock cutting from the drilling process. The duties of the mudlogger 
are to compile a concise record of the subsurface and any major drilling events that may occur, such as 
kicks or losses in the drilling mud system, variations in stand pipe pressure or increase in mud gas levels.  

In terms of safety the two most important aspects of the mudlogging are mud gas monitoring and the 
monitoring of the overall volume of mud within the closed drilling system. The data that is recorded in 
the mudlogging unit is displayed and stored as a continuous plot. As with the DDR the mudlog should be 
updated and distributed on a 24 hour period, and will form part of the daily meeting between the wellsite, 
client and logging contractors. 

 Data contained on the mud log should include  

• Well metadata  

o Well name, rig name, contractor supplying the service,  

• Well contsruction metadata  

o Casing points, Bit information after each bit change or casing point 

• Orientation data 

o Hole inclination and azimuth as text data plotted at set intervals  

• Drilling parameters  

o Continuous parameters, WOB, ROP, RPM, Torque, SPP  

• Drilling fluid parameters  
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o Mud temperature in and mud temperature out 

o Mud weight in and mud weight out  

o Gas values from the mud stream, both total and C1 – C5 breakdown 

• Geological attributes  

o Simplified lithology column.  

• Geomechanical data 

o Formation integrity tests (FIT) or leak off tests (LOT) 

The mud log plot is used by engineers and geoscientists alike; for geoscientists including the Gamma Ray 
log as part of the mud log data stream can allow stratigraphy to be followed in real time. Understanding 
these data in context of the lithostratigraphy allows for better planning of geological data, as the 
upcoming lithologies are known and operations can be planned accordingly.  

Post-well operations, the mudlog forms the only data source that provides a continuous depth record of 
the rig data and the lithology encountered.  

Post-well operations the final mud log is usually delivered to the client in digital format and will be a record 
of all data from the initial spudding of the well to the TD. It should typically include all the information 
stated above.  

For engineering aspects the data can be used to optimise casing points, select drill bits and optimise 
parameters to increase drilling rate based on WOB and SPP for future wells. The advantage of the mud 
log is in relating all the drilling parameters to an actual lithology complied by analysing the cuttings stream 
is a simple visual plot.  

5.6 LWD / Downhole logging requirements  

Natural Gamma ray (GR) – In modern well drilling to significant depth this almost always run in any BHA 
as part for the Measurement While Drilling (MWD) program, cheap, reliable and passive. Gamma ray 
Primarily used for correlation between wells. Historic archived Gr data can be used as a base line to 
identify scale build up if the well is re logged during its lifecycle.  

Well orientation data – Data derived from the MWD tools also typically includes well orientation data, 
principally hole azimuth and deviation enabling well path to be fully reconstructed to high vertical and 
horizontal accuracy. 

Caliper – This may be either mechanical or Ultrasonic. Caliper logs will give in real time an indication of 
borehole condition and where remedial action may be required. Washouts can make successful 
cementing harder to achieve. Formations that squeeze into the borehole will require additional reaming 
prior to running casing, identifying formations that either squeeze or washout can help in optimising 
further well drilling operations later in the development phase. Aside from hole condition the caliper can 
be used for determining stress direction enhancing potential fracture operations. 

Spectral gamma ray (SGR) – similar to the GR tool, but only records radiation from 3 energy windows, 
Thorium, Potassium and Uranium. As with the regular Gr log, the SGR log is a valuable correlation tool, 
and can also give an insight into shale mineralogy. Open fractures and potential build up of salts or scale.  

Neutron – secondary porosity log, useful in carbonates where porosity can be read directly from the real 
time log. An epithermal neutron tool will provide a baseline survey for future cased hole logging of fluids. 

Density – primary tool for determining porosity and  lithology; increasingly this can also be run as a image 
tool, primarily for aiding geosteering, but will also image fractures and sedimentary structures. Additional 
to the density measurement the density tool also calculates a Photo electric factor (PEF) for lithology 
identification. 
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Sonic – cross-dipole orientated sonic log provides a definitive indication of the stress field for potential 
artificial fracturing should the reservoir require stimulation. Porosity from the sonic log, unlike the density 
log only records the connected pore volume, this is useful in Vuggy carbonates where differentiation 
between the connected and unconnected pore volume may be large. In conjunction with the density log 
both compressional and shear sonic can be utilized to create a synthetic seismic trace to calibrate the 
lithology to the seismic.  

Downhole drilling data - Downhole monitoring of WOB, TRQ, stick slip, and whirl (torsional energy build 
up in the drill pipe) and vibration. Provided real time will optimise drilling, when presented as part of the 
mudlog will give insights into improved drilling practice.  

Temperature – Most LWD tools measure temperature as part of the measurement correction process. 
This meaurement is strongly affected by the lack of well equilibration unless run in a static water column 
that has equilibrated for an extended period and by the surface weather  conditions that effects mud 
temperature. Though this will not be a true formation temperature it can be an indication of an increasing 
geothermal gradient. For an accurate formation temperature the well will require to be shut in for a period 
of time to reach thermal equilibrium, then logged with WL 

Pressure – dedicated formation pressure tool is widely run in the oil and gas industry to confirm 
connectivity between various reservoir units. This measurement is not without significant risk of 
differential sticking, if pressure measurements are required it is better to run a dedicated wireline tool.  

Core – in an undeveloped geothermal prospect coring of the reservoir is vital to provide a continuous 
record of the lithology for both sedimentological analysis and lab based studies, most notable being the 
development of a porosity permeability relationship, log calibration and confined and unconfined stress 
strain relationships. Dependant on the requirement, core can either be collected continuously using 
wireline retrieval inside the drill pipe, or if larger core diameter is required traditional coring can be 
employed, cutting 30ft barrels and tripping out the whole BHA for retrieval. 

The above logging suites are considered the minimum data acquisition that would allow a full 
characterisation of the reservoir. As the development becomes more mature more specific questions may 
arise and the data logging can be adjusted to be more specific. With core data uncertainty to porosity 
permeability will be reduced, it may be possible to do without the neutron density logs, avoiding the risk 
of potential loss of a radioactive source downhole, replaced by the NMR tool.  

Borehole imaging log suite:  this provides understanding of the fracture conditions and lithological 
situation within the borehole and to enable identification of hole problems and geomechanical 
parameters such as borehole breakouts indicating in-situ stress anisotropy and orientation.  

5.7 Fractured reservoirs – data acquisition 

Hard rock fractured reservoirs pose a significant challenge to logging, rather than intergranular 
permeability, the reservoir will be produced through a set of open fractures, for these types of reservoir 
drilling has the associated risks of sudden gains/losses in the drilling mud, fractures are notoriously 
difficult to plug with lost circulation material. With this in mind, coupled with less requirement to 
characterise the host rock a much more basic LWD program would be sufficient. Once the well is drilled 
and under control, Wireline could be used to gather the main data acquisition program. 

5.8 LWD Down hole logging – Fractured reservoir   

Natural Gamma Ray – as part of the MWD deviation and azimuth assembly  

Ultrasonic caliper – real time indication of borehole condition, fracture identification, orientation and if 
the fracture is open or closed.  
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Given the high temperature that are likely to be encountered and the potential for borehole instability 
due to losses or kicks the above data acquisition program will provide sufficient data to characterise the 
reservoir and inform future field development.  

5.9 Conclusion  

Geothermal boreholes are technically complex and expensive to deliver with a payback time measured in 
decades. The absence of a corpus of legacy data directly related to the specific drilling challenges of 
geothermal boreholes means that there is a limited pool of data available for use in planning of future 
wells. Whilst there is a continuity of practice for drilling of oil wells which can be used to train data for the 
geothermal industry, there is a need for development of a similar corpus of geothermal data. The 
increased depths and the need to ensure borehole stability to enable the long-term production of heated 
fluids means that boreholes need to be drilled with care. It is therefore essential that a native-digital 
standard for propagation of Daily Drilling Reports is established that allows easy data extraction so that 
these data can be easily extracted and prioritised for learning from.  
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